
Technische Universität München WS 2017/18
Institut für Informatik
Theoretical Computer Science

Fundamental Algorithms 6 - Solution Examples

Exercise 1 (Flat Trees)
Write an algorithm that copies all keys that are stored in a binary search tree into an array of appropriate
size. In the resulting array, the keys shall be sorted in descending order.

Solution:
The main idea of the algorithm is to rely on recursion, processing the input as follows:

1. Copy all keys of the right subtree to the array

2. Copy the root of the tree into the array

3. Copy all keys of the left subtree to the array

The algorithm can be written as:

Algorithm 1: Tree2Array
Input: T : BinaryTree

A: Array[1..n]
pos: Current write position

Result: New write position
if isEmpty(T) then

return pos;
end
pos← Tree2Array(right(T), A, pos);
A[pos]← key(T);
pos← Tree2Array(left(T), A, pos + 1);

Exercise 2 (Growing Trees)
Consider the binary tree given by the expression

x = (5, (3, ∅, (4, ∅, ∅)) , (8, (6, ∅, ∅) , (10, (9, ∅, ∅) , (13, ∅, ∅))))

1. Draw a diagram of this binary tree and decide whether it is a binary search tree.

5

3 8

4 6 10

9 13

For each node, all keys in the left subtree are smaller than that in the node, and all keys in the right
subtree are larger. Hence, the tree is a binary search tree.

1



2. Perform the following operations (using the algorithms from the lecture) and draw a diagram of the
search tree after each operation: insert(x, 11); delete(x, 5); insert(x, 5); insert(x, 12)

5

3 8

4 6 10

9 13

11

6

3 8

4 10

9 13

11

6

3 8

4

5

10

9 13

11

6

3 8

4

5

10

9 13

11

12

Exercise 3 (AVL Trees)
Decide whether the binary tree given in Exercise 2 is an AVL tree

• before the insert/delete operations, and

• after each of the regular insert and delete operations.

Again, perform the insert/delete operations given in Exercise 4, and, if required, perform the rotation(s) to
restore the AVL property after each step. Draw a diagram of the search tree after each of your insert, delete,
and rotation operations.

Solution:
Before the insert/delete operations, the height balances for the nodes are:

5+1

3+1 8+1

40 60 100

90 130

Therefore, the binary search tree is also an AVL tree.

• insert(x, 11) Violated in node 8 → Left-rotation:

5+2

3+1 8+2

40 60 10+1

90 13−1

110

5+1

3+1 100

40 80 13−1

60 90 110

2



• delete(x, 5): Satisfied → No rotation required:

6+1

3+1 100

40 8+1 13−1

90 110

• insert(x, 5): Violated in node 3 → Left-rotation:

60

3+2 100

4+1 8+1 13−1

50 90 110

6+1

40 100

30 50 8+1 13−1

90 110

• insert(x, 12): Violated in node 13 → Left-right-rotation:

6+2

40 10+1

30 50 8+1 13−2

90 11+1

120

6+2

40 10+1

30 50 8+1 13−2

90 12−1

110

6+1

40 100

30 50 8+1 120

90 110 130

3


